Chemical Engineering (CHE)
Introduction to chemical engineering and engineering productivity software. Communication skills development, technical reporting and presentation, engineering ethics, and a variety of topics are discussed.
A continuation of CHE 100. Advanced engineering applications of productivity software. Engineering graphics and technical flow sheeting. Team project research and project management skills. Internet publishing.
Material and energy balances for engineering systems subjected to chemical and physical transformations. Calculations on industrial processes.
Utilization of numeric and analytic methods to find solutions to a variety of chemical engineering problems. Emphasis placed on development of computer code, and interpretation of results. Topics covered include systems of algebraic equations, initial value differential equations, and boundary value differential equations.
Flow of fluids. Fundamentals of fluid flow design equations as applied to selected unit operations.
Fundamentals of heat and mass transfer. Heat and mass transfer design equations as applied to selected unit operations. Mass transfer in stage-wise and continuous contacting equipment. Unsteady state operations in mass transfer equipment.
This introductory course will introduce engineering students to basic principles of Biological Sciences, which will enable them to understand more advanced courses on the topic and provide a solid base for further study in all life sciences-related topics required in their individual programs.
Laboratory work in the unit operations of chemical engineering, fluid flow, heat transfer, and other selected topics.
Laws of thermodynamics and their application to chemical engineering operations.
Material and energy balances for engineering systems subjected to chemical and physical transformations. Laws of thermodynamics and their application to chemical engineering operations.
Flow of fluids, heat, and mass transfer design equations as applied to selected unit operations. Mass transfer in stage-wise and continuous contacting equipment. Unsteady state operations in mass transfer equipment.
The equations of change in different coordinate systems (mass, momentum, and energy transport). Velocity distribution in laminar and turbulent flow. Formulation and analytical solutions to the problems of viscous flow, molecular diffusion, heat conduction and convection.
This introductory course will introduce graduate engineering students to basic principles of Biological Sciences, which will enable them to understand more advanced courses on the topic and provide a solid base for further study in all life sciences-related topics required in their individual programs.
Study of physiological control systems and engineering of external control of biological systems by focusing on an endocrine system disorder -- diabetes. The effects of type 1 diabetes on glucose homeostasis and various treatment technologies for regulation of glucose concentration. Development of mathematical models describing the dynamics of glucose and insulin concentration variations, blood glucose concentration measurement and inference techniques, insulin pumps, and artificial pancreas systems.
Laboratory work in distillation, humidification, drying, gas absorption, filtration, and other areas.
Introduction to the fundamentals of chemical kinetics. The design, comparison, and economic evaluation of chemical reactors. Emphasis on homogeneous systems.
Descriptive statistics and graphs, probability distributions, random sampling, independence, significance tests, design of experiments, regression, time series analysis, statistical process control, and introduction to multivariate analysis.
Principles of process modeling. Modeling of non-reactive and reactive dynamic processes. Transfer functions. Modeling of multistage and non-linear processes. Discrete-event processes, Markov processes, and automata theory.
Dynamic process models, stability assessment, feedback, and feed forward control strategies, design and tuning of closed-loop controllers, time domain and frequency domain design and performance assessment methods. Multivariable systems, interaction, multi-loop control. Software for process simulation and controller design.
Utilization of numerical methods to find solutions to a variety of chemical engineering problems. Emphasis placed on problem formulation, development of computer code, and interpretation of results. Techniques covered include: systems of algebraic equations, linear regression, and statistics. Numerical differentiation and integration, solution of ordinary and partial differential equations.
Second law analysis of cooling, separation, combustion, and other chemical processes. Chemical reaction equilibrium and processing applications.
Considerations of transport processes in the polymer industry. Analysis of heat, mass, and momentum transfer in molten polymers and polymer solutions. The polymer flow processes to be discussed will include: extrusion, calendaring, fiber spinning, injection molding, mixing, and polymerization reaction.
Thermodynamics, kinetic and mass-transfer fundamentals of electrochemical devices. Potential and potential measurement. Batteries and fuel cells. Fundamentals of corrosion and corrosion prevention.
System or chemical reactor perspective of fuel cell design. Macro-scale modeling of fuel cell applications. Description of electrode/electrolyte assemblies and the three phase region, polarization curve characterization, analysis of continuous flow systems, typical fuel cell stack configurations, analysis of spatial non-uniformities in stacks, and balance of plant design.
An introduction to the basic principles that govern the synthesis, processing and properties of polymeric materials. Topics include classifications, synthesis methods, physical and chemical behavior, characterization methods, processing technologies and applications. Same as CHEM 470 and MMAE 470.
Regimes of fluidized beds, rheology behavior of fluidized beds, particle classification, properties of the bubble, emulsion, elutriation, and jet. Fluid mechanic theory and heat and mass transfer in fluidized beds. Design aspects of fluidized beds and pneumatic conveying. Industrial applications of fluidized beds (catalytic reactors, drying, coal conversion, waste treatment).
Students undertake an independent research project under the guidance of a chemical and biological engineering faculty member.
Introduction to design techniques and economic aspects of chemical processes. The technical and economic aspects of equipment selection and design, and alternative methods of operation.
Group project in process design. Integration of technical, safety, environmental, economic, and societal issues in process development and design. Final part of the IPRO project package. Project teams consist of chemical engineering students and students from other disciplines and professions. Students from other academic units should register for designated section of IPRO 497 (three credits) and their contribution to the project tasks will be defined accordingly.
Special projects.
The purpose of the course is to apply process design disciplines to integrate safety as a principal of the design process. Typical subjects are: thermodynamics of explosions, identification of process hazards, chemical reactivity hazards, dispersion models of release of toxic materials, fires and fire protection, and HAZOP and Fault Tree analysis.
The equations of change (mass, momentum, and energy transport) for single phase and single component, multiphase and multicomponent systems. Analytical and numerical solution to equations of change for Velocity, Temperature and Concentration distribution with more than one independent variable in chemical and biological processes. Dimensional analysis for problem reduction.
Laws of thermodynamics applied to chemical and biological engineering problems, properties of real fluids, phase and chemical equilibria, applications to chemical and biological processes and auxiliary equipments. Core course.
Graduate standing or consent of instructor. This course aims to introduce and develop a number of diversified professional skills necessary for success in an engineering research and development environment. Selected topics covered in the areas of technology entrepreneurship, opportunity assessment, creativity and innovation, project management, management of organizational change, entrepreneurial leadership, and intellectual property management.
Organization of the design problem and application of single and multi-variable search techniques using both analytical and numerical methods.Prerequisite:An undergraduate course in process design.
Process Analytical Technology (PAT) is introduced as a framework to enhance process understanding and assist in the development of reliable and efficient pharmaceutical operations. The course covers the definition of critical performance attributes within the context of FDA regulations; an overview of analytic measurement methods of chemical, physical and biological quantities; statistical data analysis and chemometric methods, including statistical process monitoring, multivariate analysis and parameter estimation; and design of real-time decision systems, including automatic control operations and risk-based analysis of final product quality. Prerequisite: BS in engineering or equivalent.
Study of physiological control systems and engineering of external control of biological systems by focusing on an endocrine system disorder -- diabetes. The effects of type 1 diabetes on glucose homeostasis and various treatment technologies for regulation of glucose concentration. Development of mathematical models describing the dynamics of glucose and insulin concentration variations, blood glucose concentration measurement and inference techniques, insulin pumps, and artificial pancreas systems.
Advanced treatment of chemical kinetics and reactor systems including non-isothermal, nonideal flow systems. Modeling of complex reactions, catalysis and heterogeneous reactor analysis. Reactor stability concepts. Core course.
State space, transfer function and discrete-time representations of process systems. Control system design. Interaction assessment. Multivariable and model predictive-control techniques. Core course.
Mathematical techniques and their application to the analytical and numerical solution of chemical engineering problems. The analytical component includes review of matrices and determinants, as well as solution of ordinary, partial differential and integral equations. The numerical component includes iterative solution of algebraic equations, numerical analysis and solution of ordinary differential equations. Core course.
Advanced mathematical techniques, numerical analysis, and solution to problems in transport phenomena, thermodynamics, and reaction engineering. Review of iterative solution of algebraic equations. Nonlinear initial and boundary value problems for ordinary differential equations. Formulation and numerical solution of parabolic, elliptic, and hyperbolic partial differential equations. Characteristics, formulation, and numerical solution of integral equations. Solution of transient two-phase flow problems using CFD codes.
The engineering of reactors for the manufacture of synthetic polymeric materials, commercial processes for manufacture of polymers of many types, polymer chemistry and engineering reactor design.
The course will cover three topics related to renewable Energy Technologies. 1. Review of renewable energy sources; solar, wind, biomass, etc. 2. Energy storage and conversion with emphasis on batteries and fuel cells 3. Hydrogen as an energy carrier and the Hydrogen Economy.
Fluidization phenomena (bubbling, slugging, elutriation, and jets in fluidized beds). Multiphase flow approach to fluidization and gas/solids flow systems. Kinetic theory approach to fluid/particle flow systems. Analysis of flow of particles in pneumatic conveying lines (dilute flow) and stand pipe (dense flow). Hydrodynamic analysis of spouted and circulating fluidized beds. Examples from current literature on applications of multiphase flow.
The linkage of energy, environmental and economic issues. The impact of energy supply and end use on human well-being and the ecosystem. A comprehensive approach to the resolution of resource, technical, economic, strategic, environmental, socio- and geopolitical problems of the energy industries. Pathways to a sustainable global energy system.
Cellular metabolism, energetics and thermodynamics of cellular metabolism, regulation of metabolic pathways, metabolic flux analysis, metabolic control analysis, analysis of metabolic networks, synthesis and manipulations of metabolic pathways, applications - case studies.
Formulation, solution and interpretation of problems in momentum, energy and mass transport phenomena that occur in chemical and biological processes.
Advanced thermodynamics for research-oriented graduate students. The course covers the fundamental postulates of thermodynamics and introductory statistical mechanics, with applications to pure fluids, fluid mixtures, elastic solids, surfaces and macromolecules.
Analysis of momentum, heat and mass transfer in polymer processing operations. Polymer processes considered include extrusion, calendaring, fiber spinning, injection molding, and mixing.
Basic theory, methods and techniques of on-line, feedback, quality-control systems for variable and attribute characteristics. Methods for improving the parameters of the production, diagnosis and adjustment processes so that quality loss is minimized. Same as MMAE 560.
Thermodynamics and potential, Marcus theory, charge transfer kinetics and mass transport of simple systems. Electrode reactions couple with homogeneous chemical reactions. Double layer structure and adsorbed intermediates in electrode processes. Potential step and potential sweep methods.
Basic concepts of electrochemistry used in electrochemical reactor analysis and design. Thermodynamics, kinetics and transport processes in electrochemical systems, current and potential distribution, corrosion engineering, electrodeposition, batteries and fuel cells, industrial electrolysis, and electrosynthesis.
A detailed study of the thermodynamics, electrochemistry, electrode kinetics and materials aspects of fuel cells with an emphasis on polymer electrolyte fuel cells. The course will include a vigorous laboratory component and will cover the development of detailed data analysis procedures. A part of the course will cover current trends and interests through the critical discussion of recent archival publications.
Flow of viscoelastic fluids, integral and differential constitutive equations from continuum and molecular considerations, methods of experimental evaluations.
Application of engineering principles to the biological production processes. Enzyme kinetics, cell culture kinetics, transport phenomena in cells, membranes, and biological reactors ,genetics, bioseparation and downstream processing, energetics of metabolic pathways, operation modes of cell cultures, mixed and their applications.
Metal, ceramic, and polymeric implant materials. Structure-property relationships for biomaterials. Interactions of biomaterials with tissue. Selection and design of materials for medical implants.
Applications of the basic principles of physical chemistry, surfactants and interfacial phenomena, surface and interfacial tension, adsorption of surfactants from solutions, spreading, contact angles, wetting, electro kinetic phenomena, rheology, dynamic interfacial properties, mass transport across interfaces. Applications include emulsions, foams, dispersions, tribology, detergency, flotation, enhanced oil recovery, suspension, emulsion polymerization and liquid membranes.
Application of transport phenomena, and reaction engineering to pharmaceutical processes. Heat and mass transfer in bioreactors and the fluidized beds. Drying, coating and granulation. Environmental and economical issues in the pharmaceutical process. Examples from industrial processes and current literature.
Growth and differentiation of cells and tissue. In vitro control of tissue development. In vivo synthesis of tissues and organs. Transplantation of engineered cells and tissue. Techniques and clinical applications of tissue engineering.
Principle of diffusion in liquids membrane and polymers, and methods for measurement and analysis of diffusion coefficient. Principle of molecular transport in polymeric material, and drug solubility in polymers. Intravenous infusion, and polymer drug delivery systems. Process involved and kinetics of solute release. Design and optimization of drug delivery system based on pharmacokinetic/ pharmacodynamic requirements.
Presentations on recent developments in the field by academic and industrial visitors.
Advanced projects involving computer simulation, modeling or laboratory work. (Credit: 1-6 hours.)
Independent study and project. (Credit: variable)