Environmental Engineering (ENVE)
Chemical processes in environmental systems with an emphasis on equilibrium conditions in aquatic systems. Processes examined include acid-base, dissolution precipitation, air-water exchange, and oxidation-reduction reactions. Methods presented for describing chemical speciation include analytical and graphical techniques as well as computer models.
This course is intended to introduce students to the basics of occupational and environmental safety and health. Topics include fundamental principles in industrial hygiene and occupational and environmental safety based in the anticipation, recognition, evaluation, and control of chemical, biological, physical, and ergonomic hazards that can be encountered in the workplace and other settings. Applications include indoor air pollution control, natural disaster mitigation, and infectious disease transmission and control.
Processes that determine the fate and transport of contaminants in the environment. Upon successful completion of this course, students should be able to formulate creative, comprehensive solutions to transport problems, critically evaluate proposed solutions to transport problems, and acquire and integrate new information to build on these fundamentals.
Fundamentals and applications of biological mixed culture processes for air, water, wastewater, and hazardous waste treatment. Topics include biochemical reactions, stoichometry, enzyme and microbial kinetics, detoxification of toxic chemicals, and suspended growth and attached growth treatment processes. The processes discussed include activated sludge process and its modifications, biofilm processes including trickling filters and biofilters, nitrogen and phosphorous removal processes, sludge treatment processes including mesophilic and thermophilic systems, and natural systems including wetlands and lagoons.
This course introduces students to concepts of global biogeochemistry and environmental sustainability, including the practice of life cycle assessment (LCA). The course begins with an overview of the global energy, water, carbon, and nitrogen cycles and their relationships to human activities. The focus then shifts to LCA, which is an analytical approach for quantifying the relationships between economic activities and environmental issues. LCA is often used to develop sustainability metrics to compare alternative approaches to meet economic needs such as transportation, food provision, and building construction. This course is open to all majors with familiarity in basic chemistry, but students will be expected to conduct quantitative analyses and perform basic engineering calculations.
This course provides students with a comprehensive understanding of global geoenvironmental challenges. Subject matter includes interactions between soils, rocks, groundwater, and contaminants; issues related to hazardous and non-hazardous waste management; contaminated site remediation; and the principles of sustainable development. Essential topics include (1) geoenvironmental problems and the need for geoenvironmental engineering, (2) the fundamental background needed to understand and address geoenvironmental problems, (3) management of wastes through engineered landfills and impoundments, (4) characterizing, assessing, and remediating contaminated sites, (5) beneficial use of waste and recycled materials, and (6) incorporating sustainability in waste management and pollution control. By the end of the course, students will be equipped with the fundamental knowledge and practical skills to address and resolve a range of geoenvironmental issues.
To introduce students to mathematical modeling as a basic tool for problem solving in engineering and research. Environmental problems will be used as examples to illustrate the procedures of model development, solution techniques, and computer programming. These models will then be used to demonstrate the application of the models including simulation, parameter estimation, and experimental design. The goal is to show that mathematical modeling is not only a useful tool but also an integral part of process engineering.
Fundamentals and applications of physicochemical processes used in air, water, wastewater, and hazardous waste treatment systems. Topics include reaction kinetics and reactors, particle characterization, coagulation and flocculation, sedimentation, filtration, membrane separation, adsorption, and absorption.
To address the climate impacts of anthropogenic sources of carbon dioxide (CO2), it has become increasingly important to focus on solutions for CO2 removal processes, especially directly from CO2 emission sources. Carbon capture and sequestration/storage (CCS) is the process of capturing CO₂ formed during power generation and other industrial processes and sequestering it so that it is not emitted into the atmosphere. CCS technologies have significant potential to reduce CO2 emissions in energy systems. This course will review and explore, in detail, the engineering design principles for solutions of carbon capture at the source or direct air capture (DAC) from the atmosphere, utilization, and storage. Topics include an overview of the importance current and future potential of CCS and other technologies such as direct air capture; power generation fundamentals related to carbon emissions and our reliance on fossil energy; current state of research and development on carbon capture technologies; storage, monitoring, and utilization of CO2; CO2 transportation (e.g., pipeline and marine modes); and economics of technologies for removing CO2 from the atmosphere and additional methods of reducing CO2 concentrations and other greenhouse gases in the atmosphere.
Industrial waste sources and characteristics, significance of industrial waste as environmental pollutants; applications of standard and special treatment processes including physical, chemical, and biological systems.
Design of water and wastewater treatment systems. System economics and optimal design principles.
Physical processes associated with the dispersion of windborne materials from industrial and other sources. Atmospheric motion including turbulence and diffusion, mathematical models, and environmental impact assessment.
Indoor air pollution sources, indoor pollutant levels, monitoring instruments and designs, and indoor pollution control strategies; source control, control equipment and ventilation; energy conservation and indoor air pollution; exposure studies and population time budgets; effects of indoor air population; risk analysis; models for predicting source emission rates and their impact on indoor air environments.
Principles and modern practices employed in the design of engineering systems for the removal of pollutants. Design of control devices based on physical and chemical characteristics of polluted gas streams.
Application of physical and chemical processes in the design of air treatment systems; fundamentals of standard and special treatment processes.
Sources and characteristics of hazardous wastes, legal aspects of hazardous waste management, significance of hazardous wastes as air, water, and soil pollutants. Principles and applications of conventional and specialized hazardous waste control technologies.
Graduate research.
Independent study and project. (Variable credit)
Graduate research.