Industrial Tech and Mgmt (INTM)
Focuses on integration of systems, processes and human resources to enhance productivity and efficiency in various industries. Key topics include systems optimization, process improvement methodologies, and aspects of quality management. Emphasis on data analysis, decision-making, quality, and measurement systems while identifying inefficiencies in industrial systems, proposing effective solutions, and implementing strategies that drive continuous improvement. Case studies and industry examples highlight the diverse applications of industrial engineering across manufacturing and service sectors.
Maintenance of facilities and building systems is a major concern for all industrial operations. Facility managers must maintain heating, ventilation, air conditioning, plumbing, fire-life safety, electrical and other building systems, many of which are interrelated. Dysfunction in one system can cause problems in another, leading to occupant discomfort, poor energy efficiency and premature equipment failure. Equipment maintenance techniques have evolved to include more scientific diagnosis for increased uptime reliability. Preventive, predictive and prescriptive maintenance command a high percentage of modern behaviors to keep facilities running at peak efficiency. This course blends both the technical and managerial sides of maintenance with a focus on procedural analysis.
Introduces the full range of technologies involved in construction of both new and modified facilities, including steel, concrete and timber construction as well as supporting specialties such as HVAC, electrical, plumbing, etc. The interactions between the various construction trades will be covered along with the role of the architects and engineers.
This course introduces accounting information used for decision-making within a business enterprise. Financial reporting, financial terminology, and the three major financial statements are reviewed. Product costing, short-term and long-term decision-making, budgeting, control of operations, and performance evaluations are covered as are cost-volume-profit relationships, relevant costs, flexible budgets, and standard costs.
Fundamentals of inventory control including inventory classifications, i.e. raw materials, work-in-process (WIP) and finished goods. Topics include inventory record keeping, inventory turnover, the 80/20 (or ABC) approach, external and internal lead times, excess/obsolete inventory, and inventory controls. Material Resource Planning (MRP) are included.
Supervision and management practices are key to all components and sectors of industry. People are the key resources and their effective use is critical to a successful operation. As companies move to become high performance organizations, traditional management tools and techniques have to be reviewed and reconsidered. Skills covered include motivation, developing consensus, conflict avoidance and negotiations. Group dynamics along with handling of individual workers is critical.
This course covers project management in the PMP framework and provides a structured approach to managing projects using Microsoft Project and Excel. Coverage includes creation of key project management charts (Gantt, Pert, CPM, timelines and resource utilization), basic statistics used in estimating task times, critical path generation in Excel and Project, project cost justification in Excel, SPC and acceptance sampling for machine, project analysis via simulation, and management of personnel, teams subcontractors and vendors. Case studies are utilized to demonstrate core concepts and dynamic scheduling.
Integrated Facilities Management involves understanding the processes and tools needed to successfully manage new construction and renovation projects, building systems improvements, ongoing facilities management functions, and integration of new technologies within buildings and infrastructure. Students learn to assess facilities projects, develop project scope, plan for implementation, and create a project team. Explores real world successes and failures in buildings, equipment and technologies. Coursework focuses on completion of a comprehensive project, from conceptualization to development and implementation, inclusive of costing, team building and creating a pitch for project funding to upper management.
Each year industrial companies are affected by critical incidents which cause disruptions in operations and significant monetary losses due to repairs and/or lost revenue. Whether it is a small fire, an extended electrical outage or an incident of a more serious magnitude, all company stakeholders-from the board of directors to the employees to the customers -are impacted. The key to understanding the complexities of industrial resiliency lies in focusing on the issues of preparedness: prevention, mitigation and control. This course is designed to prepare the student for managing a critical incident, including understanding risk and business impact, emergency preparedness, contingency planning and damage control.
Course covers the application of proven management principles and operational practices. Learn how high performance companies create a competitive advantage despite economic challenges and a transitional customer base. Factors covered include strategy deployment, financial analysis, new product development, quality, customer service, and attaining market leadership. Case studies illustrate variable impacts on business situations.
Management Information Systems (MIS) are utilized in all industrial sectors to manage, analyze, and optimize operational processes. This course examines the integration of MIS for a range of operational activities, including production scheduling, inventory control, purchasing, shipping, and invoicing. Students will be exposed to the theory of MIS by reviewing case studies and successful applications. Students learn how to build spreadsheet models for multiple business problems using linear programming (LP) and integer programming (IP) and perform regression analysis and basic time series forecasting. A variety of Microsoft Excel tools are introduced.
Maintaining and managing buildings and facilities is a challenging, multifaceted occupation. Facilities are becoming smarter and greener as the goals of energy conservation and occupant comfort have shifted to include environmental responsibility. This course examines facility operations and management (O&M) related to sustainability and green technology, with an emphasis on the U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) requirements, rating system, and the process for properties to apply for certification as a resource-efficient operation.
Logistics encompasses all activities necessary for moving products and information to and from partners and entities within the supply chain. Students gain an understanding of advanced logistical practices, examine challenges and strategies involved in designing and effectively integrating logistics within a global supply chain, and analyze the logistics value creation process to achieve a competitive advantage. Key topics include cross-organizational collaboration, international trade, performance measurement, risk management and finance.
Explores current and emerging trends in the adoption of various digital technologies to help transform business operations. Key elements include IoT, Artificial Intelligence, Machine Learning, Data Analytics, RPA, Virtual Reality, Augmented Reality (and more) and how those are applied in various industries like Construction, Manufacturing, Transportation, Facility Management, etc. Students learn to identify and evaluate digital solutions to improve processes and/or products for any business. Emphasis on implementation and change management.
Creating an organization-wide culture of quality and performance is critical to managing the unique demands of a food processing company. Learn how to develop, manage, and improve food production processes, implement lean principles to eliminate waste and improve yields, and measure operational performance. Topics covered include budgeting and financial tools, introducing new food products and processes, Total Quality Management (TQM), evaluation and management of supply chain activities, and strategy deployment techniques.
Technology changes how companies operate, impacting internal processes and how comprehensive manufacturing solutions are established to serve customer needs. The challenge lies in connecting independent processes into systems that are reliable, self-adjusting, and communicate in real time. Internal systems must successfully blend hardware, software, sensors and codes, and integrate new technologies to automate, assess and control manufacturing operations. The goal is to achieve a transparent system with faster processing times, fewer interruptions and a more continuous flow, resulting in competitive advantage throughout the entire value stream. This course covers interconnection, optimization and automation of processes to achieve competitive advantage in manufacturing operations.
Today's leading edge manufacturing environment has advanced technology and systems embedded throughout its framework. This course exposes students to the functional aspects and capabilities of a 5-axis CNC machining center, and the processes involved in taking a machined part from prototype to production. This state-of-the-art technology is used by high-production companies around the world to create complex, precision-machined parts and products with tight tolerances and extreme repeatability. Students gain experience using SinuTrain simulators and hands-on learning on a 5-axis CNC machine. Coverage includes CNC programming and use of IIoT system technologies embedded in the machine to obtain internal diagnostics with real time data and connect with internal departments, suppliers and customers. Prior completion of a course in manufacturing processes highly recommended. First course in a two-course sequence.
Continues exploration of the functional aspects, capabilities and limitations of a 5-axis CNC machining center, building upon skills and knowledge obtained in AMM I. Students increase proficiency in metrology, geometric dimensioning and tolerancing per ASME standards, material sciences, and use of computer integrated technology (CAD, CAM and CIM). This course provides a top-to-bottom, hands-on experience for the manufacturing process and the technologies that surround it, with consideration of managerial perspectives and concerns.
This course covers the full range of activities involved in the supply chain. This includes management tools for optimizing of supply chains, relationships with other parts of the organization, in-house versus third party approaches, and suitable performance measurements. Topics covered include Warehouse Management Systems (WMS), Transportation Management Systems (TMS), Advanced Planning and Scheduling Systems (APS) as well as cost benefit analysis to determine the most appropriate approach.
Covers the logical progression and methods for creating a distribution strategy, identifying inventory levels for multiple locations and management approaches to achieve target values, followed by the design and layout of the physical warehouse and needed equipment. Distribution topics include material and demand planning, network design, customer service, global distribution, and 3PLs. Inventory topics include defining what to stock and how much, forecasting, maintaining LT/SS/EOQ, and adjusting the order cycle. Warehousing topics include layout, equipment, material control, cost management, technology, and KPIs.
Covers modern purchasing practices, the critical interplay between purchasing and supply chain management, and how to strategically manage procurement functions and innovate in a globalized, technology-driven environment. Students examine the strategic role of purchasing organizations, development of effective sourcing strategies, negotiation techniques, and cost management approaches, to include cost modeling, cost breakdown analysis, identification of key cost drivers, global procurement challenges, and the transformative role of e-procurement technologies.
Internationalization of industry requires special expertise and knowledge, which must be taken into consideration throughout all interactions with overseas companies either as customers or suppliers. Topics covered include custom clearance, bonded shipping, international shipping options, import financing and letters of credit, customer regulations, insurance, import duties and trade restrictions, exchange rates, and dealing with different cultures.
Organizational involvement in international business activities -- whether sourcing material and designs, expanding product sales and reach, or creating economies of scale and scope -- requires an understanding of various factors in international finance, marketing, and strategy. This course brings together these disciplines to explore financial factors that may add or transform risks, the necessary adjustments in the creation of global marketing strategy, and the strategies for creating and preserving a competitive advantage in the international arena.
Provides an overview of manufacturing, logistics and supply chain management (SCM) information systems and software packages, as well as practical tools and techniques for effective decision making. Emphasis on the importance of accurate and timely data, efficient business processes, and utilizing state-of-the-art information tools and technologies. Students gain hands-on experience using a modern ERP system to understand the features, functionality, and end-to-end dependencies of the core ERP modules used in an enterprise.
The range of supply chain strategies to be considered when assessing a firm's internal and external supply chain network. Strategies involved in the end-to-end supply chain including product life cycle management (PLM), inventory optimization, network design optimization, management tools for optimizing supply chains, relationships with other parts of the organization, in-house versus third-party approaches, and suitable performance measurements.
The development of new products and operational processes in a manufacturing setting requires collaboration and teamwork across multiple departments and flexible (agile) methods to expediently assess product/process viability and implement production without interrupting current operations. This course explores agile methodologies and management strategies involved in developing a new product or process, to include innovation and design, environmental concerns, market analysis, timing, budgets, collaborative strategies, patents and trade secrets, licensing and distribution, and marketing/pricing.
Foundations, methodologies and strategies of demand management, planning and forecasting. Course covers the range of factors that influence, shape and control demand, digitization of the supply chain, use of technology and big data, forecasting techniques and performance metrics.
Organizations of all types employ rigorous analysis of vast amounts of internal and external data to improve the quality of decision making. This course prepares students to define and organize data, perform exploratory analysis, and select and implement analytical models, with a focus on applications in the areas of operations and marketing. Excel plugins, statistical packages (R, SAS or SPSS), and business intelligence products like Tableau will be used extensively for modeling. The course covers descriptive and inferential statistics, principles of design of experiments and analysis of variance (ANOVA), and supervised and unsupervised learning methods including regression, classification, clustering and neural networks. Students will also learn social network data analysis and text mining methods. Prior completion of a course in elementary probability and statistics highly recommended.
Pharmaceutical manufacturing is a highly regulated and collaborative industry. This course presents the multiple interactions of engineering technology, manufacturing, process, formulation and analytical chemistries, and regulatory disciplines that are involved in the development and manufacture of pharmaceutical drug products and devices, as well as the regulatory approval process. Key practical aspects of manufacturing are addressed, to include 1) the process of drug product development from discovery to manufacturing, 2) drug products in Phase 1 to Phase 3 clinical trials, and 3) the regulatory approval of a new drug product application. Issues related to medical devices, supply chain and packaging are also presented. Understanding industry practices enables proactive interactions with various internal departments to get a final approved product manufactured, packaged and delivered to the customer (patient or pharmacy).
Examines the concept of sustainability and its application in the industrial environment. Identifies underlying stresses on natural and human environments and the resultant problems for business and society including legal, ethical, and political issues related to sustainability. Global warming, peak oil, and commodity pricing are considered as indicators of the need for improvements in sustainability. Industrial ecology will be discussed as well as strategies for developing sustainable practices in manufacturing, power generation, construction, architecture, logistics, and environmental quality. Coverage includes case studies on businesses that have developed successful sustainability programs.
This course explores the limitations in supply and the need for sustainable use of carbon and non-carbon-based materials such as oil, minerals, food, water, and other natural resources used by industry. Limitations in the global availability of such resources pose challenges to industry which will require careful consideration and planning to ensure continued prosperity for current and future generations. Course will cover strategies and options to mitigate anticipated shortages and optimize the use of non-renewable natural resources, review of fuel and raw material pricing, and cost/benefit analysis of sustainable development proposals. Technical analyses will be presented during class discussions, but a technical background is not required.
Explores how energy is used, produced, managed and regulated. Covers existing and new energy technologies and policies, with focus on sustainability, efficiency, electrification and decarbonization, including alternatives to fossil carbon-based fuels (coal, gas and petroleum) such as nuclear, hydroelectric, solar, wind and geothermal. Topics include energy storage systems, including batteries and the role of hydrogen and carbon dioxide removal or carbon capture, use and storage (CCUS). Energy supply side trends, options and constraints in generation, transmission and distribution of electricity by power utilities and by industrial firms, including data center operators. Demand side technologies and distributed energy resources, to include industrial energy efficiency, smart buildings, the Internet of Things (IoT), combined heat and power (CHP), microgrids, demand response, virtual power plants (VPPs) and power system flexibility. Energy regulations and policy incentives, implications for industry and best practices in the US and overseas, including regulatory compliance and environmental, societal and governance (ESG) issues.
This course allows the student to research and report on an industrial sustainability issue of interest and relevance to their career objectives. Topics may focus on industrial ecology, energy sources/systems, sustainable operations, integrated technologies, regulations, environmental issues, resource use, alternative manufacturing methods, facilities, logistics, etc. Special topics of current interest may be taught as group lecture.
Special project.
Independent study and project. Permission of instructor required.